Gene Therapy for HIV Cure

Paula Cannon

University of Southern California

Gene therapy: a 'good idea' since 1972, clinical trials since 1990

Current gene therapies (not incl. cancer), 2021

Disease	Gene of interest	Company pursuing gene therapy		
AADC deficiency (CNS)	AADC	PTC Therapeutics (GT-AADC)		
ADA-SCID	adenosine deaminase	Orchard Therapeutics, (Strimvelis, EMA approved)		
Alpha-1 antitrypsin deficiency	A1AT	Adverum		
β-Thalassemia (severe sickle cell)	Hemoglobin (β-chain)	Bluebird Bio (Zynteglo, EMA approved)		
Cerebral ALD	ABCD1	Bluebird Bio (Lenti-D)		
Choroideremia	СНМ	Biogen/Nightstar, Spark		
Congestive heart failure	Adenyl cyclase 6	Renova (RT-100)		
Cystic Fibrosis	CTFR	Vertex, Boehringer Ingelheim		
Duchenne muscular dystrophy (DMD)	Dystrophin	Sarepta, Pfizer, Audentes, Solid		
Fabry disease	alpha-galactosidase A	UniQure, Sangamo		
Glaucoma	BDNF pathway	Astellas		
Glioma (cancer)	RRVs deliver cytosine deaminase	Tocagen (Toca511 & TocaFC)		
Hemophilia A	Factor VIII	BioMarin, Spark, Shire, Sangamo, UniQure		
Hemophilia B	Factor IX	Spark/Pfizer, UniQure, Sangamo, Freeline		
HIV	CCR5 negative CD4 cells	American Gene Technology		
HoFH (hypercholesterolemia)	LDLR	RegenxBio		
Huntington's Disease	huntingtin	UniQure		
Lipoprotein lipase deficiency	Lipoprotein lipase	UniQure (Glybera, EMA approval)		
Leber's hereditary optic neuropathy (LHON)	ND4	GenSight Biologics		
Leber's congenital amaurosis (LCA)	CEP290	ProQR		
Metachromatic leukodystrophy	ARSA	Orchard		
MPS III (Sanfilippo Syndrome)	SGSH	Abeona		
Parkinson's disease	AADC	Voyager		
Pompe Disease	acid alpha-glucosidase	Sarepta, Audentes		
Recessive Dystrophic Epidermolysis Bullosa	Colagen C7	Abeona (EB-101)		
RPE65 deficiency (vision loss)	RPE65	Spark (Luxturna, FDA approved)		
Spinal Muscular Atrophy (SMA I)	SMN1	Novartis (Zolgensma, FDA approved)		
Wet AMD (retinal disease)	anti-VEGF	RegenexBio		
Wiskott Aldrich syndrome (WAS)	WAS	Orchard		
X-linked myotubular myopathy	MTM1	Audentes		
X-linked retinitis pigmentosa	RPGR	Biogen/Nightstar		
X-linked SCID	IL2RG	Mustang Bio		

www.risingtidebio.com

Gene editing (**CRISPR/Cas9**) is bringing new capabilities to gene therapy

- Cas9 cuts DNA at a site determined by its partner CRISPR guide RNA
- Guide RNAs are easy to synthesize to match specific DNA targets

Repair of DNA breaks allows site-specific modification of genes

Gene editing trials, 2021

Disease	Group / strategy / status			
Cancer (PD-1 knockout)	 Hangzhou Cancer Hospital T cells modified (ex vivo) with CRISPR, for advanced esophageal cancer, Phase 2 trial active Sichuan University T cells modified (ex vivo) with CRISPR, for metastatic non-small cell lung cancer, Phase 1 trial active U Penn/Parker Institute T cells modified (ex vivo) with CRISPR, TCR and PD-1 removed, NY-ESO-1 added trial at U Penn aimed at late-stage cancer patients (multiple myeloma, melanoma, sarcoma) 			
Cancer (multiple myeloma)	CRISPR Therapeutics •allogeneic CRISPR gene edited CAR-T cell therapy, CAR targeting BCMA antigen is inserted into T cells (<i>ex vivo</i>) •native TCR removed to decrease chance of immune rejection (GvHD), native MHC-1 removed to increase T cell persistence			
Cancer (lymphoma)	CRISPR Therapeutics allogeneic CRISPR gene edited CAR-T cell therapy, CAR targeting CD19 antigen is inserted into T cells (<i>ex vivo</i>) native TCR removed to decrease chance of immune rejection (GvHD), native MHC-1 removed to increase T cell persistence 			
Hemoglobinopathies (β-thalassemia, sickle cell disease)	Vertex Pharmaceutical/CRISPR Therapeutics •CD34+ stem cells modified (ex vivo) with CRISPR, <i>BCL11A</i> is cut which increases fetal hemoglobin, trials in progress			
Hemophilia B	Sangamo •IV delivery of AAV2/6 virus with ZFN to insert missing F9 gene under albumin promoter in patient's liver cells, Phase 1/2			
HIV	 Affiliated Hospital to Academy of Military Medical Sciences •CD34+ stem cells treated with CRISPR to eliminate CCR5, resulting T cells should be immune to HIV, Trial in Beijing, China. Sangamo •HSC cells and T cells (separate trials) modified with ZFN to remove CCR5 			
Leber congenital amaurosis 10 (LCA10, hereditary blindness)	Allergan/Editas •First time CRISPR delivered into the body (<i>in vivo</i>), gene editing to fix a mutation in centrosomal protein 290 gene •Virus carrying CRISPR delivered with injection into subretinal area of the eye, human trials in progress			
MPS I (Hurler syndrome)	Sangamo •IV delivery of AAV2/6 virus with ZFN to insert IDUA gene under albumin promoter in patient's liver cells, Phase 1/2			
MPS II (Hunter's syndrome)	Sangamo •IV delivery of AAV2/6 virus with ZFN to insert IDS under albumin promoter in patient's liver cells, Phase 1/2			

www.risingtidebio.com

Is HIV a good candidate for gene therapy?

(1) HIV integrates permanently into host chromosomes

• Its like an "infectious genetic disease"

(2) HIV can become latent and persist, so ART doesn't cure

- HIV infects activated T cells and becomes latent as cells transition to memory T cells
- Latent virus persists, including if T cell clone expands

 Latently infected cells are rare (1 in 10⁶ memory CD4 T cells) but can reactivate and cause viral rebound if ART stopped

(3) HIV mutates and evolves away from adaptive immune responses

• Keeps one-step ahead of both antibodies and CD8 T cells

(4) HIV thwarts immune responses by targeting CD4 helper T cells

(4) HIV thwarts immune responses by targeting CD4 helper T cells

Potential approaches for HIV gene therapy

- **Protect:** Make the target CD4 T cells resistant to HIV
- Attack: Enhance immune responses against HIV
- **Purge:** Remove the reservoir of latent HIV proviruses

Protecting cells by CCR5 knockout

CCR5 was the first target for gene editing

- CCR5 is the major entry co-receptor for HIV
- CCR5-negative individuals are highly resistant to HIV (Two copies of the defective CCR5∆32 gene)
- HSC transplants from CCR5∆32 donors are the only known HIV cures

CCR5^{*A*}**32 HSC** *transplants have cured* **HIV**

	Berlin Patient ¹	London Patient ²	Dusseldorf Patient ³
Cancer	AML	HL	AML
ART post-HSCT	none	16 mths	66 mths
HIV remission	> 10 yrs	18 mths	3 mths
	× 10 yi3	16 11115	0 11113

Timothy Ray Brown

Adam Castillejo

Hutter NEJM 2009
 Gupta Nature 2019
 Jensen CROI 2019

Gene editing to knockout CCR5

Current clinical trials targeting CCR5

CCR5∆32 donor HSC, for blood cancers

IciStem consortium

Autologous T cells edited with ZFNs*

• U Penn, UCSF, UCLA, Sangamo Therapeutics

Autologous HSC edited with ZFNs*

City of Hope, Sangamo Therapeutics

Edit donor HSC with CRISPR/Cas, for blood cancers

Affiliated Hospital to the Academy of Military Medicine, Beijing University

* Zinc finger nucleases, an alternative to CRISPR/Cas9

CCR5-ZFN HSC trial

Pilot Study to Evaluate the Feasibility, Safety and Engraftment of ZFN CCR5-Modified CD34+ Hematopoietic Stem/Progenitor Cells in HIV-1 (R5) Infected Patients

- Clinical PI: Amrita Krishnan, MD
- Lead City of Hope investigator: John A Zaia, MD
- Lead Sangamo Therapeutics investigator: Adrian Woolfson, MD, PhD
- Clinical Sites (enrollment and follow-up):
 - Mills Clinical Research: Anthony M Mills, MD (Los Angeles, CA)
 - Quest Clinical Research: Jay Lalezari, MD (San Francisco, CA)
 - UCLA CARE Center: Ronald Mitsuyasu, MD (Los Angeles, CA)

ClinicalTrials.gov Identifier NCT02500849

CCR5-ZFN HSC trial

Sangame Cityof Hope

** ATI eligibility criteria

- Aviremia (<20gc/mL)
- CD4+ count ≥450 cells/µL OR CD4+ ≥350 cells/µL and CD4% ≥25%
- Detectable CCR5-modified CD4+ cells in blood

Study status and summary

- 14 subjects enrolled, 8 treated
- Two subjects on ATI

Subject	ZFN#1	ZFN#2	ZFN#3	ZFN#5	ZFN#7	ZFN#9
% indel IP	43.25	20.04	8.00	24.80	34.82	21.75

CCR5 Disruption in Peripheral Blood Post Infusion

Day 0, infusion of investigational product (IP)

Preserving CD4 T cell help – American Gene Technologies

NCT04561258 Oct 2020, DC

- HIV Gag-specific CD4 T cells isolated from an HIV+ individual's blood
- Massively expanded ex vivo by stimulating with HIV Gag peptides
- Made resistant to HV with a lentiviral vector (shRNAs targeting CCR5 and HIV Tat and Vif)

Making better CD8 T cells – CAR T cells

Making better CD8 T cells – Lentigen

NCT04648046, Dec 2020, UCSF

gp120duoCAR

Kim Anthony-Gonda et al., Sci Transl Med, 019;11:eaav5685

HIV-resistant CD4+ CAR plus CD8+ CAR T cells

HIV-Resistant and HIV-Specific CAR-Modified CD4+ T Cells Mitigate HIV Disease Progression and Confer CD4+ T Cell Help In Vivo *Maldini et al., Mol.Ther.* 2020

- CAR is CD4 extracellular domains
- T cells made HIV-resistant by expressing an entry inhibitor
- Engineering CD4 plus CD8 cells improves activity

Broadly neutralizing antibodies as HIV therapeutics

Classes of anti-HIV bnAbs

- Rare, highly evolved antibodies that develop in some HIV+ individuals and can suppress multiple strains of HIV
- However, bnAbs can't be induced by vaccination

bnAbs injected as monoclonal antibodies, or expressed from AAV gene therapy vectors injected into muscle

Naturally-produced antibodies are a perfect drug

Our strategy mimics heavy chain only antibodies

- H chain only antibodies from camelids
- **V_HH** is a compact single domain ("nanobodies")
- Lack of $C_H 1$ removes the need for an L chain partner

Editing strategy for human heavy chain only Abs

Editing strategy for human heavy chain only Abs

Editing strategy for human heavy chain only Abs

Engineered human B cells make functional heavy chain bnAbs

Summary

- Gene therapy is increasingly being used for diseases with few/no other options
- FDA has approved 4 gene therapies and >900 in development
- Advances in CRISPR/Cas9 gene editing is expanding the options
- Public awareness and acceptance is growing, helped by the success of current trials for SCIDs, SCD, cancer and blindness
 - and maybe even the COVID RNA and adenoviral vector vaccines?

HIV gene therapy approaches

 Protect:
 Make the target CD4 T cells resistant to HIV

 - CCR5 resistance

Attack: Enhance immune responses against HIV

- Expand and protect CD4 T cell help
- CAR T cells to improve CD8 T cells
- Engineer B cells to express bnAbs

Purge:

Remove the reservoir of latent HIV proviruses - In vivo delivery of CRISPR/Cas to destroy HIV

Acknowledgments

Cannon Lab

Geoff Rogers Chun Huang Xiaoli Huang Atishay Mathur Bayan Mahgoub

Nick Llewellyn Camille Chen Magda Golyska Evan Lopez

Funding: R01 DE025167 (Burton) U19 HL129902 (Cannon)

Excising proviral DNA – Excision Biotherapeutics

EBT-101 – inject 10¹³ AAV9 vectors/kg carrying saCas9 and 2 gRNAs

Acknowledgment

This Mountain West AIDS Education and Training (MWAETC) program is supported by the Health Resources and Services Administration (HRSA) of the U.S. Department of Health and Human Services (HHS) as part of an award totaling \$2,911,844 with 0% financed with non-governmental sources.

The content in this presentation are those of the author(s) and do not necessarily represent the official views of, nor an endorsement, by HRSA, HHS, or the U.S. Government.

